Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Graph Neural Networks (GNNs) have demonstrated remarkable performance in various graph-based machine learning tasks, yet evaluating the importance of neighbors of testing nodes remains largely unexplored due to the challenge of assessing data importance without test labels. To address this gap, we propose Shapley-Guided Utility Learning (SGUL), a novel framework for graph inference data valuation. SGUL innovatively combines transferable data-specific and model-specific features to approximate test accuracy without relying on ground truth labels. By incorporating Shapley values as a preprocessing step and using feature Shapley values as input, our method enables direct optimization of Shapley value prediction while reducing computational demands. SGUL overcomes key limitations of existing methods, including poor generalization to unseen test-time structures and indirect optimization. Experiments on diverse graph datasets demonstrate that SGUL consistently outperforms existing baselines in both inductive and transductive settings. SGUL offers an effective, efficient, and interpretable approach for quantifying the value of test-time neighbors.more » « lessFree, publicly-accessible full text available January 22, 2026
- 
            Data valuation is essential for quantifying data’s worth, aiding in assessing data quality and determining fair compensation. While existing data valuation methods have proven effective in evaluating the value of Euclidean data, they face limitations when applied to the increasingly popular graph-structured data. Particularly, graph data valuation introduces unique challenges, primarily stemming from the intricate dependencies among nodes and the growth in value estimation costs. To address the challenging problem of graph data valuation, we put forth an innovative solution, Precedence-Constrained Winter (PC-Winter) Value, to account for the complex graph structure. Furthermore, we develop a variety of strategies to address the computational challenges and enable efficient approximation of PC-Winter. Extensive experiments demonstrate the effectiveness of PC-Winter across diverse datasets and tasks.more » « lessFree, publicly-accessible full text available January 22, 2026
- 
            Graph Neural Networks (GNN) have proven successful for graph-related tasks. However, many GNNs methods require labeled data, which is challenging to obtain. To tackle this, graph contrastive learning (GCL) have gained attention. GCL learns by contrasting similar nodes (positives) and dissimilar nodes (negatives). Current GCL methods, using data augmentation for positive samples and random selection for negative samples, can be sub-optimal due to limited positive samples and the possibility of false-negative samples. In this study, we propose an enhanced objective addressing these issues. We first introduce an ideal objective with all positive and no false-negative samples, then transform it probabilistically based on sampling distributions. We next model these distributions with node similarity and derive an enhanced objective. Comprehensive experiments have shown the effectiveness of the proposed enhanced objective for a broad set of GCL models.more » « less
- 
            Graph Neural Networks (GNNs) have seen significant success in tasks such as node classification, largely contingent upon the availability of sufficient labeled nodes. Yet, the excessive cost of labeling large-scale graphs led to a focus on active learning on graphs, which aims for effective data selection to maximize downstream model performance. Notably, most existing methods assume reliable graph topology, while real-world scenarios often present noisy graphs. Given this, designing a successful active learning framework for noisy graphs is highly needed but challenging, as selecting data for labeling and obtaining a clean graph are two tasks naturally interdependent: selecting high-quality data requires clean graph structure while cleaning noisy graph structure requires sufficient labeled data. Considering the complexity mentioned above, we propose an active learning framework, GALClean, which has been specifically designed to adopt an iterative approach for conducting both data selection and graph purification simultaneously with best information learned from the prior iteration. Importantly, we summarize GALClean as an instance of the Expectation-Maximization algorithm, which provides a theoretical understanding of its design and mechanisms. This theory naturally leads to an enhanced version, GALClean+. Extensive experiments have demonstrated the effectiveness and robustness of our proposed method across various types and levels of noisy graphs.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available